Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
BMC Med Inform Decis Mak ; 23(Suppl 1): 40, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2265954

RESUMEN

BACKGROUND: Two years into the COVID-19 pandemic and with more than five million deaths worldwide, the healthcare establishment continues to struggle with every new wave of the pandemic resulting from a new coronavirus variant. Research has demonstrated that there are variations in the symptoms, and even in the order of symptom presentations, in COVID-19 patients infected by different SARS-CoV-2 variants (e.g., Alpha and Omicron). Textual data in the form of admission notes and physician notes in the Electronic Health Records (EHRs) is rich in information regarding the symptoms and their orders of presentation. Unstructured EHR data is often underutilized in research due to the lack of annotations that enable automatic extraction of useful information from the available extensive volumes of textual data. METHODS: We present the design of a COVID Interface Terminology (CIT), not just a generic COVID-19 terminology, but one serving a specific purpose of enabling automatic annotation of EHRs of COVID-19 patients. CIT was constructed by integrating existing COVID-related ontologies and mining additional fine granularity concepts from clinical notes. The iterative mining approach utilized the techniques of 'anchoring' and 'concatenation' to identify potential fine granularity concepts to be added to the CIT. We also tested the generalizability of our approach on a hold-out dataset and compared the annotation coverage to the coverage obtained for the dataset used to build the CIT. RESULTS: Our experiments demonstrate that this approach results in higher annotation coverage compared to existing ontologies such as SNOMED CT and Coronavirus Infectious Disease Ontology (CIDO). The final version of CIT achieved about 20% more coverage than SNOMED CT and 50% more coverage than CIDO. In the future, the concepts mined and added into CIT could be used as training data for machine learning models for mining even more concepts into CIT and further increasing the annotation coverage. CONCLUSION: In this paper, we demonstrated the construction of a COVID interface terminology that can be utilized for automatically annotating EHRs of COVID-19 patients. The techniques presented can identify frequently documented fine granularity concepts that are missing in other ontologies thereby increasing the annotation coverage.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Humanos , Pandemias , SARS-CoV-2
2.
Information ; 13(11):543, 2022.
Artículo en Inglés | MDPI | ID: covidwho-2116121

RESUMEN

Since the start of the COVID-19 pandemic, government authorities have responded by issuing new public health policies, many of which were intended to contain its spread but ended up limiting economic and social activities. The citizen responses to these policies are diverse, ranging from goodwill to fear and anger. It is challenging to determine whether or not these public health policies achieved the intended impact. This requires systematic data collection and scientific studies, which can be very time-consuming. To overcome such challenges, in this paper, we provide an alternative approach to continuously monitor and dynamically make sense of how public health policies impact citizens. Our approach is to continuously collect Twitter posts related to COVID-19 policies and to analyze the public reactions. We have developed a web-based system that collects tweets daily and generates timelines and geographical displays of citizens' 'concern levels';. Tracking the public reactions towards different policies can help government officials assess the policy impacts in a more dynamic and real-time manner. For this paper, we collected and analyzed over 16 million tweets related to ten policies over a 10-month period. We obtained several findings;for example, the 'COVID-19 (General)';and ';Ventilators';policies engendered the highest concern levels, while the 'Face Coverings';policy caused the lowest. Nine out of ten policies exhibited significant changes in concern levels during the observation period.

3.
J Biomed Inform ; 120: 103861, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1293913

RESUMEN

The current intensive research on potential remedies and vaccinations for COVID-19 would greatly benefit from an ontology of standardized COVID terms. The Coronavirus Infectious Disease Ontology (CIDO) is the largest among several COVID ontologies, and it keeps growing, but it is still a medium sized ontology. Sophisticated CIDO users, who need more than searching for a specific concept, require orientation and comprehension of CIDO. In previous research, we designed a summarization network called "partial-area taxonomy" to support comprehension of ontologies. The partial-area taxonomy for CIDO is of smaller magnitude than CIDO, but is still too large for comprehension. We present here the "weighted aggregate taxonomy" of CIDO, designed to provide compact views at various granularities of our partial-area taxonomy (and the CIDO ontology). Such a compact view provides a "big picture" of the content of an ontology. In previous work, in the visualization patterns used for partial-area taxonomies, the nodes were arranged in levels according to the numbers of relationships of their concepts. Applying this visualization pattern to CIDO's weighted aggregate taxonomy resulted in an overly long and narrow layout that does not support orientation and comprehension since the names of nodes are barely readable. Thus, we introduce in this paper an innovative visualization of the weighted aggregate taxonomy for better orientation and comprehension of CIDO (and other ontologies). A measure for the efficiency of a layout is introduced and is used to demonstrate the advantage of the new layout over the previous one. With this new visualization, the user can "see the forest for the trees" of the ontology. Benefits of this visualization in highlighting insights into CIDO's content are provided. Generality of the new layout is demonstrated.


Asunto(s)
Ontologías Biológicas , COVID-19 , Enfermedades Transmisibles , Comprensión , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA